Simulation

“Discrete-Event System Simulation”

Dr. Mesut Güneş
Chapter 10

Output Analysis for a Single Model
Purpose

- **Objective:** Estimate system performance via simulation
- If \(\theta \) is the system performance, the precision of the estimator \(\hat{\theta} \) can be measured by:
 - The standard error of \(\hat{\theta} \).
 - The width of a confidence interval (CI) for \(\theta \).
- **Purpose of statistical analysis:**
 - To estimate the standard error or CI for \(\theta \).
 - To figure out the number of observations required to achieve desired error or CI.
- **Potential issues to overcome:**
 - Autocorrelation, e.g. inventory cost for subsequent weeks lack statistical independence.
 - Initial conditions, e.g. inventory on hand and number of backorders at time 0 would most likely influence the performance of week 1.
Outline

- Distinguish the two types of simulation:
 - transient vs.
 - steady state
- Illustrate the inherent variability in a stochastic discrete-event simulation.
- Cover the statistical estimation of performance measures.
- Discusses the analysis of transient simulations.
- Discusses the analysis of steady-state simulations.
Type of Simulations

- Terminating versus non-terminating simulations

- **Terminating simulation:**
 - Runs for some duration of time T_E, where E is a specified event that stops the simulation.
 - Starts at time 0 under well-specified initial conditions.
 - Ends at the stopping time T_E.
 - Bank example: Opens at 8:30 am (time 0) with no customers present and 8 of the 11 teller working (initial conditions), and closes at 4:30 pm (Time $T_E = 480$ minutes).
 - The simulation analyst chooses to consider it a terminating system because the object of interest is one day’s operation.
Type of Simulations

- **Non-terminating simulation:**
 - Runs continuously, or at least over a very long period of time.
 - Examples: assembly lines that shut down infrequently, hospital emergency rooms, telephone systems, network of routers, Internet.
 - Initial conditions defined by the analyst.
 - Runs for some analyst-specified period of time T_E.
 - Study the steady-state (long-run) properties of the system, properties that are not influenced by the initial conditions of the model.

- **Whether a simulation is considered to be terminating or non-terminating depends on both**
 - The objectives of the simulation study and
 - The nature of the system
Stochastic Nature of Output Data

- Model output consist of one or more random variables because the model is an input-output transformation and the input variables are random variables.

- M/G/1 queueing example:
 - Poisson arrival rate = 0.1 per minute; service time \(\sim \mathcal{N}(\mu = 9.5, \sigma = 1.75) \).
 - System performance: long-run mean queue length, \(L_Q(t) \).
 - Suppose we run a single simulation for a total of 5000 minutes
 - Divide the time interval \([0, 5000)\) into 5 equal subintervals of 1000 minutes.
 - Average number of customers in queue from time \((j-1)1000\) to \(j(1000)\) is \(Y_j\).

\[L_Q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{\rho^2}{1 - \rho} \]
Stochastic Nature of Output Data

- **M/G/1 queueing example (cont.):**
 - Batched average queue length for 3 independent replications:

<table>
<thead>
<tr>
<th>Batching Interval (minutes)</th>
<th>Batch, j</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 1000)</td>
<td>1</td>
<td>1, Y_{1j}</td>
</tr>
<tr>
<td>[1000, 2000)</td>
<td>2</td>
<td>2, Y_{2j}</td>
</tr>
<tr>
<td>[2000, 3000)</td>
<td>3</td>
<td>3, Y_{3j}</td>
</tr>
<tr>
<td>[3000, 4000)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>[4000, 5000)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>[0, 5000)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Inherent variability in stochastic simulation both within a single replication and across different replications.
- The average across 3 replications, \bar{Y}_1, \bar{Y}_2, \bar{Y}_3, can be regarded as independent observations, but averages within a replication, Y_{11}, ..., Y_{15}, are not.
Measures of performance

- Consider the estimation of a performance parameter, θ (or ϕ), of a simulated system.
 - Discrete time data: $[Y_1, Y_2, ..., Y_n]$, with ordinary mean: θ
 - Continuous-time data: $\{Y(t), 0 \leq t \leq T_E\}$ with time-weighted mean: ϕ

- Point estimation for discrete time data.
 - The point estimator:

 $$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

 - Is unbiased if its expected value is θ, that is if: $E(\hat{\theta}) = \theta$
 - Is biased if: $E(\hat{\theta}) \neq \theta$ and $E(\hat{\theta}) - \theta$ is called bias of $\hat{\theta}$
Point Estimator

- **Point estimation for continuous-time data.**
 - The point estimator:

 \[
 \hat{\phi} = \frac{1}{T_E} \int_{0}^{T_E} Y(t) dt
 \]

 - Is biased in general where: \(E(\hat{\phi}) \neq \phi \)
 - An unbiased or low-bias estimator is desired.

- **Usually, system performance measures can be put into the common framework of \(\theta \) or \(\phi \):**
 - The proportion of days on which sales are lost through an out-of-stock situation, let:

 \[
 Y(i) = \begin{cases}
 1, & \text{if out of stock on day } i \\
 0, & \text{otherwise}
 \end{cases}
 \]
Point Estimator

- **Performance measure that does not fit:** quantile or percentile: \(\Pr\{Y \leq \theta\} = p \)
 - Estimating quantiles: the inverse of the problem of estimating a proportion or probability.
 - Consider a histogram of the observed values \(Y \):
 - Find \(\hat{\theta} \) such that 100\(p \)% of the histogram is to the left of (smaller than) \(\hat{\theta} \).
 - A widely used performance measure is the median, which is the 0.5 quantile or 50-th percentile.
Confidence-Interval Estimation

- To understand confidence intervals fully, it is important to distinguish between measures of error, and measures of risk, e.g., confidence interval versus prediction interval.

- Suppose the model is the normal distribution with mean θ, variance σ^2 (both unknown).
 - Let Y_i be the average cycle time for parts produced on the i-th replication of the simulation (its mathematical expectation is θ).
 - Average cycle time will vary from day to day, but over the long-run the average of the averages will be close to θ.
 - Sample variance across R replications:
 $$S^2 = \frac{1}{R-1} \sum_{i=1}^{R} (Y_i - \bar{Y})^2$$
Confidence-Interval Estimation

- **Confidence Interval (CI):**
 - A measure of error.
 - Where Y_i are normally distributed.

 $$
 \overline{Y} \pm t_{\alpha/2, R-1} \frac{S}{\sqrt{R}}
 $$

 - We cannot know for certain how far \overline{Y} is from θ but CI attempts to bound that error.
 - A CI, such as 95%, tells us how much we can trust the interval to actually bound the error between \overline{Y} and θ.
 - The more replications we make, the less error there is in \overline{Y} (converging to 0 as R goes to infinity).
Confidence-Interval Estimation

Prediction Interval (PI):

- A measure of risk.
- A good guess for the average cycle time on a particular day is our estimator but it is unlikely to be exactly right.
- PI is designed to be wide enough to contain the *actual* average cycle time on any particular day with high probability.
- Normal-theory prediction interval:

\[
\bar{Y}_n \pm t_{\alpha/2,R-1} S \sqrt{1 + \frac{1}{R}}
\]

- The length of PI will not go to 0 as \(R \) increases because we can never simulate away risk.
- PI's limit is: \(\theta \pm z_{\alpha/2} \sigma \)
Output Analysis for Terminating Simulations

- A terminating simulation: runs over a simulated time interval $[0, T_E]$.
- A common goal is to estimate:

\[
\theta = E \left(\frac{1}{n} \sum_{i=1}^{n} Y_i \right), \quad \text{for discrete output}
\]

\[
\phi = E \left(\frac{1}{T_E} \int_{0}^{T_E} Y(t) dt \right), \quad \text{for continuous output} \quad Y(t), 0 \leq t \leq T_E
\]

- In general, independent replications are used, each run using a different random number stream and independently chosen initial conditions.
Statistical Background

- **Important to distinguish** within-replication data from across-replication data.

- **For example, simulation of a manufacturing system**
 - Two performance measures of that system: cycle time for parts and work in process (WIP).
 - Let Y_{ij} be the cycle time for the j-th part produced in the i-th replication.
 - Across-replication data are formed by summarizing within-replication data \bar{Y}_i.

<table>
<thead>
<tr>
<th>Within-Replication Data</th>
<th>Across-Replication Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_{11} Y_{12} \ldots Y_{1n_1}</td>
<td>$\bar{Y}_{1\cdot}$, S_1^2, H_1</td>
</tr>
<tr>
<td>Y_{21} Y_{22} \ldots Y_{2n_2}</td>
<td>$\bar{Y}_{2\cdot}$, S_2^2, H_2</td>
</tr>
<tr>
<td>\vdots \vdots \vdots \vdots</td>
<td></td>
</tr>
<tr>
<td>Y_{R1} Y_{R2} \ldots Y_{Rn_R}</td>
<td>$\bar{Y}_{R\cdot}$, S_R^2, H_R</td>
</tr>
</tbody>
</table>
Statistical Background

- **Across Replication:**
 - For example: the daily cycle time averages (discrete time data)

 - The average: \(\bar{Y} = \frac{1}{R} \sum_{i=1}^{R} Y_i \)
 - The sample variance: \(S^2 = \frac{1}{R-1} \sum_{i=1}^{R} (Y_i - \bar{Y})^2 \)
 - The confidence-interval half-width: \(H = t_{\alpha/2, R-1} \frac{S}{\sqrt{R}} \)

- **Within replication:**
 - For example: the WIP (a continuous time data)

 - The average: \(\bar{Y}_i = \frac{1}{T_{Ei}} \int_{0}^{T_{Ei}} Y_i(t) dt \)
 - The sample variance: \(S_i^2 = \frac{1}{T_{Ei}} \int_{0}^{T_{Ei}} (Y_i(t) - \bar{Y}_i)^2 dt \)
Statistical Background

- Overall sample average, \bar{Y}, and the interval replication sample averages, \bar{Y}_i, are always unbiased estimators of the expected daily average cycle time or daily average WIP.

- Across-replication data are independent (different random numbers) and identically distributed (same model), but within-replication data do not have these properties.
Confidence Intervals with Specified Precision

- The half-length \(H \) of a 100(1 - \(\alpha \))% confidence interval for a mean \(\theta \), based on the \(t \) distribution, is given by:

\[
H = t_{\alpha / 2, R-1} \frac{S}{\sqrt{R}}
\]

\(R \) is the number of replications, \(S^2 \) is the sample variance.

- Suppose that an error criterion \(\varepsilon \) is specified with probability 1 - \(\alpha \), a sufficiently large sample size should satisfy:

\[
P\left(\left|\bar{Y} - \theta\right| < \varepsilon\right) \geq 1 - \alpha
\]
Confidence Intervals with Specified Precision

- Assume that an initial sample of size R_0 (independent) replications has been observed.
- Obtain an initial estimate S_0^2 of the population variance σ^2.
- Then, choose sample size R such that $R \geq R_0$:
 - Since $t_{\alpha/2, R-1} \geq z_{\alpha/2}$, an initial estimate of R:
 $$R \geq \left(\frac{z_{\alpha/2} S_0}{\varepsilon} \right)^2,$$
 $z_{\alpha/2}$ is the standard normal distribution.
 - R is the smallest integer satisfying $R \geq R_0$ and $R \geq \left(\frac{t_{\alpha/2, R-1} S_0}{\varepsilon} \right)^2$.
- Collect $R - R_0$ additional observations.
- The $100(1 - \alpha)$% CI for θ:
 $$\bar{Y} \pm t_{\alpha/2, R-1} \frac{S}{\sqrt{R}}$$
Call Center Example: estimate the agent’s utilization ρ over the first 2 hours of the workday.

- Initial sample of size $R_0 = 4$ is taken and an initial estimate of the population variance is $S_0^2 = (0.072)^2 = 0.00518$.
- The error criterion is $\varepsilon = 0.04$ and confidence coefficient is $1 - \alpha = 0.95$, hence, the final sample size must be at least:

$$\left(\frac{z_{0.025}S_0}{{\varepsilon}} \right)^2 = \frac{1.96^2 \times 0.00518}{0.04^2} = 12.14$$

- For the final sample size:

<table>
<thead>
<tr>
<th>R</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{0.025,R-1}$</td>
<td>2.18</td>
<td>2.16</td>
<td>2.14</td>
</tr>
<tr>
<td>($t_{\alpha/2,R-1}S_0 / \varepsilon$)2</td>
<td>15.39</td>
<td>15.1</td>
<td>14.83</td>
</tr>
</tbody>
</table>

- $R = 15$ is the smallest integer satisfying the error criterion, so $R - R_0 = 11$ additional replications are needed.
- After obtaining additional outputs, half-width should be checked.
Quantiles

- Here, a proportion or probability is treated as a special case of a mean.
- When the number of independent replications \(Y_1, \ldots, Y_R \) is large enough that \(t_{\alpha/2,n-1} = z_{\alpha/2} \), the confidence interval for a probability \(p \) is often written as:

\[
\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{R-1}}
\]

- A quantile is the inverse of the probability to the probability estimation problem:

Find \(\theta \) such that \(Pr(Y \leq \theta) = p \)
Quantiles

- The best way is to sort the outputs and use the \((R*p)\)-th smallest value, i.e., find \(\theta\) such that \(100p\%\) of the data in a histogram of \(Y\) is to the left of \(\theta\).
 - Example: If we have \(R=10\) replications and we want the \(p = 0.8\) quantile, first sort, then estimate \(\theta\) by the \((10)(0.8) = 8\)-th smallest value (round if necessary).

<table>
<thead>
<tr>
<th>Sorted Data</th>
<th>5.6</th>
<th>7.1</th>
<th>8.8</th>
<th>8.9</th>
<th>9.5</th>
<th>9.7</th>
<th>10.1</th>
<th>12.2</th>
<th>12.5</th>
<th>12.9</th>
</tr>
</thead>
</table>

5.6 \(\Rightarrow\) sorted data

This is our point estimate
Quantiles

- **Confidence Interval of Quantiles:** An approximate \((1-\alpha)100\%\) confidence interval for \(\theta\) can be obtained by finding two values \(\theta_l\) and \(\theta_u\)

 - \(\theta_l\) cuts off \(100p_l\)% of the histogram (the \(RP_l\) smallest value of the sorted data).

 - \(\theta_u\) cuts off \(100p_u\)% of the histogram (the \(RP_u\) smallest value of the sorted data).

\[
\begin{align*}
\text{where } p_\ell &= p - z_{\alpha/2} \sqrt{\frac{p(1-p)}{R-1}} \\
p_u &= p - z_{\alpha/2} \sqrt{\frac{p(1-p)}{R-1}}
\end{align*}
\]
Example: Suppose $R = 1000$ reps, to estimate the $p = 0.8$ quantile with a 95\% confidence interval.

- First, sort the data from smallest to largest.
- Then estimate of θ by the $(1000)(0.8) = 800$-th smallest value, and the point estimate is 212.03.
- And find the confidence interval:

\[
\begin{align*}
 p_l &= 0.8 - 1.96 \sqrt{\frac{0.8(1 - 0.8)}{1000 - 1}} = 0.78 \\
 p_u &= 0.8 + 1.96 \sqrt{\frac{0.8(1 - 0.8)}{1000 - 1}} = 0.82
\end{align*}
\]

The c.i. is the 780$^{\text{th}}$ and 820$^{\text{th}}$ smallest values

- The point estimate is
- The 95\% c.i. is [188.96, 256.79]
Output Analysis for Steady-State Simulation

- Consider a single run of a simulation model to estimate a steady-state or long-run characteristics of the system.
 - The single run produces observations Y_1, Y_2, ... (generally the samples of an autocorrelated time series).
 - Performance measure:

 \[
 \theta = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i, \quad \text{for discrete measure} \quad (\text{with probability 1})
 \]

 \[
 \phi = \lim_{T_E \to \infty} \frac{1}{T_E} \int_{0}^{T_E} Y(t) dt, \quad \text{for continuous measure} \quad (\text{with probability 1})
 \]

 - Independent of the initial conditions.
The sample size is a design choice, with several considerations in mind:
- Any bias in the point estimator that is due to artificial or arbitrary initial conditions (bias can be severe if run length is too short).
- Desired precision of the point estimator.
- Budget constraints on computer resources.

Notation: the estimation of θ from a discrete-time output process.
- One replication (or run), the output data: Y_1, Y_2, Y_3, \ldots
- With several replications, the output data for replication r: $Y_{r1}, Y_{r2}, Y_{r3}, \ldots$
Initialization Bias

- **Methods to reduce the point-estimator bias caused by using artificial and unrealistic initial conditions:**
 - Intelligent initialization.
 - Divide simulation into an initialization phase and data-collection phase.

- **Intelligent initialization**
 - Initialize the simulation in a state that is more representative of long-run conditions.
 - If the system exists, collect data on it and use these data to specify more nearly typical initial conditions.
 - If the system can be simplified enough to make it mathematically solvable, e.g. queueing models, solve the simplified model to find long-run expected or most likely conditions, use that to initialize the simulation.
Initialization Bias

- Divide each simulation into two phases:
 - An initialization phase, from time 0 to time T_0.
 - A data-collection phase, from T_0 to the stopping time $T_0 + T_E$.
 - The choice of T_0 is important:
 - After T_0, system should be more nearly representative of steady-state behavior.
 - System has reached steady state: the probability distribution of the system state is close to the steady-state probability distribution (bias of response variable is negligible).
Initialization Bias

- **M/G/1 queueing example:** A total of 10 independent replications were made.
 - Each replication beginning in the empty and idle state.
 - Simulation run length on each replication was $T_0 + T_E = 15000$ minutes.
 - Response variable: queue length, $L_Q(t,r)$ (at time t of the r-th replication).
 - Batching intervals of 1000 minutes, batch means

- **Ensemble averages:**
 - To identify trend in the data due to initialization bias
 - The average corresponding batch means across replications:

 $$
 \bar{Y}_{.j} = \frac{1}{R} \sum_{r=1}^{R} Y_{rj}
 $$

 - The preferred method to determine deletion point.
Initialization Bias

- A plot of the ensemble averages, $\bar{Y}_{(n,d)}$, versus $1000j$, for $j = 1, 2, ..., 15$.

![Graph showing the ensemble averages vs. 1000j]
Chapter 10. Output Analysis for a Single Model

Initialization Bias

- Cumulative average sample mean (after deleting d observations):

$$\overline{Y}_{d}(n, d) = \frac{1}{n-d} \sum_{j=d+1}^{n} \overline{Y}_j$$

- Not recommended to determine the initialization phase.

- It is apparent that downward bias is present and this bias can be reduced by deletion of one or more observations.
Initialization Bias

- No widely accepted, objective and proven technique to guide how much data to delete to reduce initialization bias to a negligible level.
- Plots can, at times, be misleading but they are still recommended.
 - Ensemble averages reveal a smoother and more precise trend as the # of replications, R, increases.
 - Ensemble averages can be smoothed further by plotting a moving average.
 - Cumulative average becomes less variable as more data are averaged.
 - The more correlation present, the longer it takes for \bar{Y}_j to approach steady state.
 - Different performance measures could approach steady state at different rates.
Error Estimation

- If \(\{Y_1, \ldots, Y_n\} \) are not statistically independent, then \(S^2/n \) is a biased estimator of the true variance.
 - Almost always the case when \(\{Y_1, \ldots, Y_n\} \) is a sequence of output observations from within a single replication (autocorrelated sequence, time-series).

- Suppose the point estimator \(\theta \) is the sample mean
 \[
 \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i
 \]
 - Variance of \(\bar{Y} \) is very hard to estimate.
 - For systems with steady state, produce an output process that is approximately covariance stationary (after passing the transient phase).
 - The covariance between two random variables in the time series depends only on the lag, i.e. the number of observations between them.
Error Estimation

- For a covariance stationary time series, \(\{Y_1, \ldots, Y_n\} \):
 - Lag-\(k \) autocovariance is: \(\gamma_k = \text{cov}(Y_1, Y_{1+k}) = \text{cov}(Y_i, Y_{i+k}) \)
 - Lag-\(k \) autocorrelation is: \(\rho_k = \frac{\gamma_k}{\sigma^2} \quad -1 \leq \rho_k \leq 1 \)

- If a time series is covariance stationary, then the variance of \(\overline{Y} \) is:

\[
V(Y) = \frac{\sigma^2}{n} \left[1 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right]
\]

- The expected value of the variance estimator is:

\[
E\left(\frac{S^2}{n} \right) = B \cdot V(\overline{Y}), \quad \text{where} \quad B = \frac{n/c - 1}{n-1}
\]
Error Estimation

a) $\rho_k > 0$ for most k

Stationary time series Y_i exhibiting positive autocorrelation.
- Serie slowly drifts above and then below the mean.

b) $\rho_k < 0$ for most k

Stationary time series Y_i exhibiting negative autocorrelation.

c) Nonstationary time series with an upward trend
Error Estimation

- The expected value of the variance estimator is:

\[E\left(\frac{S^2}{n}\right) = B \cdot V(\bar{Y}), \quad \text{where } B = \frac{n/c - 1}{n-1} \text{ and } V(\bar{Y}) \text{ is the variance of } \bar{Y} \]

- If \(Y_i \) are independent, then \(S^2/n \) is an unbiased estimator of \(V(\bar{Y}) \).
- If the autocorrelation \(\rho_k \) are primarily positive, then \(S^2/n \) is biased low as an estimator of \(V(\bar{Y}) \).
- If the autocorrelation \(\rho_k \) are primarily negative, then \(S^2/n \) is biased high as an estimator of \(V(\bar{Y}) \).
Replication Method

- Use to estimate point-estimator variability and to construct a confidence interval.
- Approach: make R replications, initializing and deleting from each one the same way.
- Important to do a thorough job of investigating the initial-condition bias:
 - Bias is not affected by the number of replications, instead, it is affected only by deleting more data (i.e., increasing T_0) or extending the length of each run (i.e. increasing T_E).
- Basic raw output data $\{Y_{rj}, r = 1, \ldots, R; j = 1, \ldots, n\}$ is derived by:
 - Individual observation from within replication r.
 - Batch mean from within replication r of some number of discrete-time observations.
 - Batch mean of a continuous-time process over time interval j.
Replication Method

- Each replication is regarded as a single sample for estimating θ. For replication r:

$$\bar{Y}_{r}(n, d) = \frac{1}{n - d} \sum_{j=d+1}^{n} Y_{rj}$$

- The overall point estimator:

$$\bar{Y}(n, d) = \frac{1}{R} \sum_{r=1}^{R} \bar{Y}_{r}(n, d) \quad \text{and} \quad \mathbb{E}[\bar{Y}(n, d)] = \theta_{n,d}$$

- If d and n are chosen sufficiently large:
 - $\theta_{n,d} \sim \theta$.
 - $\bar{Y}(n, d)$ is an approximately unbiased estimator of θ.
Replication Method

- To estimate the standard error of \bar{Y}, the sample variance and standard error:

$$S^2 = \frac{1}{R-1} \sum_{r=1}^{R} (\bar{Y}_r - \bar{Y})^2 = \frac{1}{R-1} \left(\sum_{r=1}^{R} \bar{Y}_r^2 - R\bar{Y}^2 \right)$$

and

$$s.e.(\bar{Y}) = \frac{S}{\sqrt{R}}$$

Mean of the undeleted observations from the r-th replication.

Mean of $\bar{Y}_1(n,d), \ldots, \bar{Y}_R(n,d)$

Standard error
Replication Method

- Length of each replication \((n) \) beyond deletion point \((d) \):
 \[
 (n - d) > 10d \quad \text{or} \quad T_E > 10T_0
 \]
- Number of replications \((R) \) should be as many as time permits, up to about 25 replications.
- For a fixed total sample size \((n) \), as fewer data are deleted \((\downarrow d) \):
 - CI shifts: greater bias.
 - Standard error of \(\bar{Y}(n, d) \) decreases: decrease variance.

Reducing bias \(\leftrightarrow \) Increasing variance

Trade off
Replication Method

- **M/G/1 queueing example:**
 - Suppose \(R = 10 \), each of length \(T_E = 15000 \) minutes, starting at time 0 in the empty and idle state, initialized for \(T_0 = 2000 \) minutes before data collection begins.
 - Each batch means is the average number of customers in queue for a 1000-minute interval.
 - The 1-st two batch means are deleted (\(d = 2 \)).

 - The point estimator and standard error are:
 \[
 \bar{Y}_{(15,2)} = 8.43 \quad \text{and} \quad s.e.(\bar{Y}_{(15,2)}) = 1.59
 \]

 - The 95% CI for long-run mean queue length is:
 \[
 \bar{Y} - t_{\alpha/2,R-1}S / \sqrt{R} \leq \theta \leq \bar{Y} + t_{\alpha/2,R-1}S / \sqrt{R}
 \]
 \[
 8.43 - 2.26(1.59) \leq L_Q \leq 8.43 + 2.26(1.59)
 \]
 A high degree of confidence that the long-run mean queue length is between 4.84 and 12.02 (if \(d \) and \(n \) are “large” enough).
Sample Size

- To estimate a long-run performance measure, θ, within $\pm \varepsilon$ with confidence $100(1 - \alpha)$%.

- M/G/1 queueing example (cont.):
 - We know: $R_0 = 10$, $d = 2$ and $S_0^2 = 25.30$.
 - To estimate the long-run mean queue length, L_Q, within $\varepsilon = 2$ customers with 90% confidence ($\alpha = 10\%$).
 - Initial estimate:
 \[
 R \geq \left(\frac{z_{0.05} S_0}{\varepsilon} \right)^2 = \frac{1.645^2 (25.30)}{2^2} = 17.1
 \]
 - Hence, at least 18 replications are needed, next try $R = 18, 19, \ldots$ using $R \geq \left(t_{0.05, R-1} S_0 / \varepsilon \right)^2$. We found that:
 \[
 R = 19 \geq \left(t_{0.05, 19-1} S_0 / \varepsilon \right)^2 = (1.73^2 \times 25.3 / 4) = 18.93
 \]
 - Additional replications needed is $R - R_0 = 19 - 10 = 9$.
Sample Size

- An alternative to increasing R is to increase total run length $T_0 + T_E$ within each replication.
 - Approach:
 - Increase run length from $(T_0 + T_E)$ to $(R/R_0)(T_0 + T_E)$, and
 - Delete additional amount of data, from time 0 to time $(R/R_0)T_0$.
 - Advantage: any residual bias in the point estimator should be further reduced.
 - However, it is necessary to have saved the state of the model at time $T_0 + T_E$ and to be able to restart the model.
Batch Means for Interval Estimation

- **Using a single, long replication:**
 - Problem: data are dependent so the usual estimator is biased.
 - Solution: batch means.

- **Batch means:** divide the output data from 1 replication (after appropriate deletion) into a few large batches and then treat the means of these batches as if they were independent.

- **A continuous-time process, \{Y(t), T_0 \leq t \leq T_0+T_E\}:**
 - \(k\) batches of size \(m = T_E / k\), batch means:
 \[
 \bar{Y}_j = \frac{1}{m} \int_{(j-1)m}^{jm} Y(t + T_0)dt
 \]

- **A discrete-time process, \{Y_i, i = d+1, d+2, \ldots, n\}:**
 - \(k\) batches of size \(m = (n - d)/k\), batch means:
 \[
 \bar{Y}_j = \frac{1}{m} \sum_{i=(j-1)m+1}^{jm} Y_{i+d}
 \]
Batch Means for Interval Estimation

\[
Y_1, \ldots, Y_d, Y_{d+1}, \ldots, Y_{d+m}, Y_{d+m+1}, \ldots, Y_{d+2m}, \ldots, Y_{d+(k-1)m+1}, \ldots, Y_{d+km}
\]

- Starting either with continuous-time or discrete-time data, the variance of the sample mean is estimated by:

\[
S^2 = \frac{1}{k} \sum_{j=1}^{k} \left(\bar{Y}_j - \bar{Y} \right)^2 = \sum_{j=1}^{k} \frac{\bar{Y}_j^2 - k\bar{Y}^2}{k(k-1)}
\]

- If the batch size is sufficiently large, successive batch means will be approximately independent, and the variance estimator will be approximately unbiased.
- No widely accepted and relatively simple method for choosing an acceptable batch size \(m \). Some simulation software does it automatically.
Summary

- **Stochastic discrete-event simulation is a statistical experiment.**
 - Purpose of statistical experiment: obtain estimates of the performance measures of the system.
 - Purpose of statistical analysis: acquire some assurance that these estimates are sufficiently precise.
- **Distinguish: terminating simulations and steady-state simulations.**
- **Steady-state output data are more difficult to analyze**
 - Decisions: initial conditions and run length
 - Possible solutions to bias: deletion of data and increasing run length
- **Statistical precision of point estimators are estimated by standard-error or confidence interval**
- **Method of independent replications was emphasized.**